
Table Bloat:
Managing Your Tuple Graveyard

Chelsea Dole
chelseadole@gmail.com

➔ Database Engineer @ Citadel

➔ Previously….
◆ Database Engineer
◆ Data Engineer
◆ Backend Engineer…

Chelsea Dole

Outline

1. Multi-Version Concurrency Control (MVCC)

2. Table bloat

3. Quantifying, mitigating, and avoiding table bloat

4. Designing bloat-aware data access patterns

1. MVCC
(Multi-Version Concurrency Control)

What is MVCC?

Multi-Version Concurrency Control:
A set of rules through which Postgres provides two

 important (yet seemingly contradictory) features:

1. Transaction isolation
2. Fast performance

Transaction Isolation Fast, Concurrent Access

➔ The “I” in ACID
◆ Atomic, Consistent,

Isolated, Durable

➔ Data within a transaction

represents table state at

transaction start

➔ Writes don’t block reads

➔ Reads don’t block writes

➔ Many sessions

Why are these goals contradictory?

TLDR; locks ensure transaction isolation, but lead to
cascading locks/waits (and therefore bad performance)

➔ EX: Basic Locking
◆ Most straightforward way to ensure transaction isolation
◆ Not compatible with performance concurrent operations

MVCC’s approach

➔ “Row versioning” via tuples

➔ All DML operations create
new tuple(s) or update tuple
metadata only

◆ INSERT, UPDATE,
DELETE, MERGE

Tuple

A physical, immutable “row” stored
on disk.

A "row" is a logical construct
consisting of 1 to n tuples under
the hood, representing the data over
time.

Live

Newest row
version

OR
used by an active

query

Dead

Old row version
AND

unused by
running queries

MVCC’s approach
➔ Transaction snapshots

➔ Tuple visibility

◆ xmin - TXID which inserted the tuple

◆ xmax - TXID which updated/deleted
the tuple

◆ xip_list - TXIDs of active
transactions

➔ TXID: assigned at transaction start

Snapshot

An in-memory data structure
created per-transaction.

Uses xmin, xmax, and xip_list to
determine which tuples are visible
for the transaction.

Example

xmin xmax id first_name city updated_at

594 1 chelsea seattle 2015-03-26T10:58:51

594 2 parag nashville 2021-07-23T21:11:48

594 3 chuck bellingham 2018-01-04T07:33:21

594 4 daryl toronto 1998-09-17T04:03:02

594 5 pradeepan chicago 2017-04-15T10:07:52

Example - INSERT

xmin xmax id first_name city updated_at

594 1 chelsea seattle 2015-03-26T10:58:51

594 2 parag nashville 2021-07-23T21:11:48

594 3 chuck bellingham 2018-01-04T07:33:21

594 4 daryl toronto 1998-09-17T04:03:02

594 5 pradeepan chicago 2017-04-15T10:07:52

600 6 john new york 2002-03-13T11:15:14
INSERT new tuple:

 xmin = current txid

TUPLE COUNT: 1

CURRENT TXID: 600

Example - UPDATE

xmin xmax id first_name city updated_at

594 1 chelsea seattle 2015-03-26T10:58:51

594 2 parag nashville 2021-07-23T21:11:48

594 3 chuck bellingham 2018-01-04T07:33:21

594 4 daryl toronto 1998-09-17T04:03:02

594 5 pradeepan chicago 2017-04-15T10:07:52

600 605 6 john new york 2002-03-13T11:15:14

605 6 john seattle 2023-03-10T14:07:52

Soft DELETE existing tuple

 xmax = current txid

INSERT new tuple with
updated values

 xmin = current txid

TUPLE COUNT: 2

CURRENT TXID: 605

Example - DELETE

xmin xmax id first_name city updated_at

594 1 chelsea seattle 2015-03-26T10:58:51

594 2 parag nashville 2021-07-23T21:11:48

594 3 chuck bellingham 2018-01-04T07:33:21

594 4 daryl toronto 1998-09-17T04:03:02

594 5 pradeepan chicago 2017-04-15T10:07:52

600 605 6 john new york 2002-03-13T11:15:14

605 609 6 john seattle 2023-03-10T14:07:52

Soft DELETE existing tuple

 xmax = current txid

TUPLE COUNT: 2

CURRENT TXID: 609

So… infinitely increasing row
count forever?

Vacuum

1. ⭐ Deletes dead tuples from Postgres pages, freeing up the
space for reuse

2. Updates Postgres internal statistics via ANALYZE, improving
query planner's effectiveness

3. Updates the "visibility map", which helps vacuum and
Index-Only Scan performance

4. Frees up TXIDs for reuse to avoid TXID exhaustion

Example - VACUUM

xmin xmax id first_name city updated_at

594 1 chelsea seattle 2015-03-26T10:58:51

594 2 parag nashville 2021-07-23T21:11:48

594 3 chuck bellingham 2018-01-04T07:33:21

594 4 daryl toronto 1998-09-17T04:03:02

594 5 pradeepan chicago 2017-04-15T10:07:52
VACUUM hard-deletes
dead tuples, freeing up page
space for reuse

TUPLE COUNT: 0

CURRENT TXID: 609

Example - INSERT + SELECT
xmin xmax id first_name city updated_at

594 1 chelsea seattle 2015-03-26T10:58:51

594 2 parag nashville 2021-07-23T21:11:48

594 3 chuck bellingham 2018-01-04T07:33:21

594 4 daryl toronto 1998-09-17T04:03:02

594 5 pradeepan chicago 2017-04-15T10:07:52

611 89 john new york 2023-04-10T17:19:37

1. TXID=611: INSERT INTO <table> VALUES (x, y, z);
2. SELECT * FROM <table>;

SELECT Snapshot

xmin: <611

xip_list: [611]

Postgres disk usage

➔ Vacuum: “frees up space for
reuse”

➔ Without explicit intervention*,
Postgres disk usage only increases

◆ Pages are only created, not deleted

◆ Vacuum deletes tuples, not pages

➔ Exceptions:

◆ Page truncation, but VERY rare

Page

The smallest unit of disk space,
8kB in size by default. Stores:
● ⭐ Heap tuples
● Page header data
● Line pointers

* (we’ll get to this later)

2. Table Bloat

Less-than-optimal
“page density”

(number of live tuples per page vs how many
could hypothetically fit)

Table Bloat

Example

vs

Why is bloat often problematic?

➔ With dead tuples occupying what should be available disk
space for new tuples, Postgres continues to create new pages

➔ After vacuum runs and dead tuples are deleted, live tuples are
stored sparsely over many pages, increasing I/O usage

Why is bloat often problematic?

Things are problematic… when they create problems 🤯🧠

➔ Problems:

◆ Bad read latency

◆ High (expensive?) disk usage

◆ High (expensive?) IOPS

➔ Bloat == the root cause of other problems, not necessarily a
problem in itself

How does bloat occur?

1. UPDATE/DELETE-heavy workloads
a. Bloat is caused by pages becoming saturated with dead

tuples, generated by updates and deletes
i. User activity resulting in cascading updates/deletes
ii. Scheduled batch jobs editing massive amounts of data

2. Badly-tuned autovacuum configuration
a. Overly conservative autovacuum config paired with high

UPDATE/DELETE workload means autovac can’t catch up

Example Case Study

id
feature_name
(varchar)

user_id
(bigint)

value
(JSONB)

…

1 last_login 61466 {...} …

2 likes_cats 9953217 true …

3 owns_house 33644221 false …

4 svd_vector 37995002 [...] …

… … … {...} …

ML Feature Store

➔ 100s/1000s features/user
➔ Table size: 300GB
➔ All writes = upserts
➔ Burst-based, high volume

write traffic triggered by user
activity

➔ Feature deprecation →
cron-based job to remove old
values

➔ Default autovacuum configs

Example Case Study

id
feature_name
(varchar)

user_id
(bigint)

value
(JSONB)

…

1 last_login 61466 {...} …

2 likes_cats 9953217 true …

3 owns_house 33644221 false …

4 svd_vector 37995002 [...] …

… … … {...} …

ML Feature Store

➔ 100s/1000s features/user
➔ Table size: 300GB
➔ All writes = upserts
➔ Burst-based, high volume

write traffic triggered by user
activity

➔ Feature deprecation →
cron-based job to remove old
values

➔ Default autovacuum configs

3.
Quantifying,
Mitigating, &
Avoiding Bloat

Quantifying table bloat

1. pgstattuple
a. Postgres contrib module created specifically for quantifying table bloat
b. Precise return value, but can be very expensive. Slow-running, high

resource usage
c. O(n) runtime based on table size

2. Estimation queries
a. Open-source estimation queries leveraging pg_class.reltuples
b. Run ANALYZE first
c. O(1) runtime, but results are only estimates

Quantifying table bloat

1. pgstattuple

2. Estimation queries

pgstattuple

db=> CREATE EXTENSION pgstattuple;

db=> SELECT * FROM
pgstattuple(‘table’);

Estimation

db=> ANALYZE VERBOSE;

db=> <your query>;

db=> SELECT * FROM pgstattuple('table_name');

-[RECORD 1]------+---------

table_len | 81584128

tuple_count | 108963

tuple_len | 73811880

tuple_percent | 90.47

dead_tuple_count | 2517

dead_tuple_len | 2006536

dead_tuple_percent | 2.46

free_space | 5017928

free_percent | 6.15

of total live tuples

% of total tuples which are live

% of total tuples which are dead

table length (bytes)

db=> SELECT * FROM pgstattuple('table_name');

-[RECORD 1]------+---------

table_len | 81584128

tuple_count | 108963

tuple_len | 73811880

tuple_percent | 90.47

dead_tuple_count | 2517

dead_tuple_len | 2006536

dead_tuple_percent | 2.46

free_space | 5017928

free_percent | 6.15

of total live tuples

% of total tuples which are live

% of total tuples which are dead

table length (bytes)

db=> ANALYZE VERBOSE;

db=> <really long bloat estimation query>;

-[RECORD 1]---+--------------------

real_size | 81723392

bloat_size | 7700480

bloat_pct | 9.422614274258219

estimated size of bloat (bytes)

estimated table length (bytes)

https://github.com/ioguix/pgsql-bloat-estimation/tree/master

estimated % of real_size used by bloat

db=> ANALYZE VERBOSE;

db=> <really long bloat estimation query>;

-[RECORD 1]---+--------------------

real_size | 81723392

bloat_size | 7700480

bloat_pct | 9.422614274258219 estimated % of real_size used by bloat

estimated table length (bytes)

https://github.com/ioguix/pgsql-bloat-estimation/tree/master

estimated size of bloat (bytes)

Comparing methods

➔ % dead tuple count (pgstattuple) vs % dead disk space

➔ Not directly comparable
◆ Tuple size varies wildly
◆ Page-level opportunistic pruning leaves 4-byte “tombstones”
◆ 1KB “dead page space”: 250 4-byte tombstones, or 10 100-byte

tuples?

➔ More info: Bloat in PostgreSQL: A Taxonomy (Peter
Geoghegan)

Interpreting results:
How much bloat is “too much”?

Interpreting results:
How much bloat is “too much”?

✨
✨

1. Very Small (<= 1GB):
a. Up to ~70% bloat is acceptable
b. This is high and not ideal, but at this table size, bloat has an

imperceptible impact on performance.
2. Small - Medium (~1-30GB):

a. Up to ~25% dead tuples is acceptable
3. Large (~30-100GB):

a. Up to ~20% dead tuples is acceptable
4. Very Large (~100GB+):

a. Up to ~18% dead tuples is acceptable

Interpreting results:
How much bloat is “too much”?

Dealing with bloated tables

1. Configure autovacuum to be more aggressive

2. Repack or rebuild tables

1. Configure autovacuum aggressively
➔ autovacuum_vacuum_scale_factor

◆ Default: 0.2 (20% of table size)
◆ “At least x% of the table must have changed”
◆ Smaller → more frequent
◆ EX: autovacuum_vacuum_scale_factor = 0.01

➔ autovacuum_vacuum_threshold
◆ Default: 50
◆ Can be used to set raw value for vacuum trigger:

● autovacuum_vacuum_scale_factor = 0
● autovacuum_vacuum_threshold = 200000

Typically tune
per-table via
ALTER TABLE,
not
server-wide

1. Configure autovacuum aggressively

➔ autovacuum_vacuum_cost_delay
◆ Default: 2ms
◆ Cost delay/wait time used in autovacuum operations
◆ NVMe/SSD: use 2ms regardless of PG version

➔ autovacuum_max_workers
◆ Default: 3 (server-wide)
◆ If you have many tables (1000s+) on your database server
◆ Check pg_stat_progress_vacuum

2. Repack or rebuild tables

VACUUM FULL

Rewrites table and all indexes into a new disk file

➔ Lock: ACCESS EXCLUSIVE (blocks reads & writes)

➔ “Wasted space” returned to the operating system.

➔ Not recommended for high-SLO systems

pg_repack (+ pg_squeeze, etc)

Duplicates the bloated table, copies over incoming data via
triggers, then switches “live” table under-the-hood

➔ Lock: ACCESS SHARE
➔ Requires 2x current table size in disk, significant CPU/RAM
➔ Occasionally flaky
➔ Recommended for supervised use

2. Repack or rebuild tables

pg_repack (+ pg_squeeze, etc)

pg_repack

db=> CREATE EXTENSION pg_repack;

$ /usr/…/pg_repack -h <HOST> -U <USER>
-d <DATABASE> -t <SCHEMA>.<TABLE>

pg_squeeze

db=> CREATE EXTENSION pg_squeeze;
db=> SELECT squeeze.squeeze_table(...);

➔ External binary, less invasive
➔ Supported in most managed

Postgres services (EX: AWS
RDS)

➔ Operates entirely within the
database, no external binary

➔ Background worker to schedule
rewrites

4.
Designing
bloat-aware data
access patterns

Data Access Patterns

➔ How, when, and why are you writing & reading data?

➔ Read vs write %?

➔ Roughly what rate of data growth do you expect?

➔ What sort of access will you/won’t you support?

If your app is UPDATE/DELETE heavy…

Can you redesign your data access patterns to have fewer
updates/deletes?

➔ EX: User actions trigger a "burst" of updates on a single row.
◆ Can you update each row once instead of n times?

➔ EX: You’re updating the same row (last_seen) 5x/second.
◆ Can you have an append-only log style table with just inserts, index on

(user_id, inserted_at), and query for the most recent row?

If you have regular large DELETE jobs…
➔ Can you replace DELETE with TRUNCATE or DETACH

PARTITION?
◆ Range or hash partitioning

➔ Are you using a reasonable batch size for DELETEs?

➔ Instead of 1 large weekly DELETE job, can you run 7 smaller
daily DELETE jobs, and configure autovacuum to trigger per
job?

Are you reinventing any wheels?

My rule of thumb: using Postgres for things outside of
Postgres’ intended OLTP purpose is fine (often via
community-supported extensions) up to a certain scale.

➔ Full Text Search (FTS)
◆ 25GB data → Postgres
◆ 100GB data → Elasticsearch

➔ Key/Value Store
◆ 50GB K/V table, 80% traffic == reads → Postgres
◆ 500GB K/V table, 80% traffic == writes → Redis

Thank you!

Chelsea Dole

https://www.linkedin.com/in/chelsea-dole/

